MATH2040A/B Homework 6 Solution

1 Compulsory Part

Sec. 5.1

 $\begin{array}{ll} (\text{Sec 5.1 Q02(e)}) & \text{Q: } V = P_3(\mathbb{R}), \, T(a+bx+cx^2+dx^3) = -d + (-c+d)x + (a+b-2c)x^2 + (-b+c-2d)x^3 \\ & \text{and} \ \beta = \{1-x+x^3, 1+x^2, 1, x+x^2\} \end{array}$

Ans : When written in the standard basis, we have

$$T\begin{pmatrix}a\\b\\c\\d\end{pmatrix} = \begin{pmatrix}-d\\-c+d\\a+b-2c\\-b+c-2d\end{pmatrix}$$

Hence we see that

$$T\begin{pmatrix}1\\-1\\0\\1\end{pmatrix} = \begin{pmatrix}-1\\1\\0\\-1\end{pmatrix} = -1\begin{pmatrix}1\\-1\\0\\1\end{pmatrix}, \ T\begin{pmatrix}1\\0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\-1\\-1\\1\end{pmatrix}, \ T\begin{pmatrix}1\\0\\0\\0\end{pmatrix} = \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \ T\begin{pmatrix}0\\1\\1\\0\end{pmatrix} = \begin{pmatrix}0\\-1\\-1\\0\end{pmatrix} = -1\begin{pmatrix}0\\1\\1\\0\end{pmatrix}$$

Hence

$$[T]_{\beta} = \begin{pmatrix} -1 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

 β is not a basis with eigenvectors.

(Sec 5.1 Q02(f)) Q:
$$V = M_{2 \times 2}(\mathbb{R}), T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -7a - 4b + 4c - 4d & b \\ -8a - 4b + 5c - 4d & d \end{pmatrix}$$

$$\beta = \{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \}$$

Ans : We have

$$T\begin{pmatrix} 1 & 0\\ 1 & 0 \end{pmatrix} = -3\begin{pmatrix} 1 & 0\\ 1 & 0 \end{pmatrix}, T\begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix}, T\begin{pmatrix} 1 & 0\\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 2 & 0 \end{pmatrix}, T\begin{pmatrix} -1 & 0\\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 2 \end{pmatrix}$$

Hence all vectors in β are eigenvectors and

$$[T]_{\beta} = \begin{pmatrix} -3 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (Sec 5.1 Q08) (a) Prove that a linear operator T on a finite dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
 - (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .

Ans :

- (a) T is invertible if and only if $det(T) \neq 0$ if and only if $det(T 0I) \neq 0$ if and only if 0 is not an eigenvalue of T.
- (b) From (a), eigenvalues are not zero. Suffices to show one way since T, T^{-1} are inverse to each other.

$$Tv = \lambda v$$
$$\frac{1}{\lambda}v = T^{-1}v$$

so λ^{-1} is an eigenvalue of T^{-1} .

- (Sec 5.1 Q10) For a finite-dimensional vector space V, any scalar λ and any ordered basis β ,
 - (a) Prove that $[\lambda I_V]_{\beta} = \lambda I$.
 - (b) Compute the characteristic polynomial of λI_V .
 - (c) Show that λI is diagonalizable and has only one eigenvalue.

Ans :

- (a) For any $\beta_i \in \beta$, $\lambda I_V \beta_i = \lambda \beta_i$, then we conclude $[\lambda I_V]_{\beta} = \lambda I$.
- (b) By definition of characteristic polynomial, $f(t) = \det(\lambda I tI) = (\lambda t)^n$, where n is the dimension of V.
- (c) By (a) and Theorem 5.1, λI is diagonalizable. Let det $(\lambda I tI) = 0$, we see the only eigenvalue is λ .
- (Sec 5.1 Q20) Ans: $\det(A tI) = f(t)$, hence $a_0 = f(0) = \det(A)$. Hence $a_0 \neq 0$ if and only if $\det(A) \neq 0$ if and only if A invertible.

Sec. 5.2

Q3(a). Let γ be the standard ordered basis of V. Then

$$[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

It is upper triangular and hence 0 is the only eigenvalue of T, which has multiplicity 4. However, $4 - \operatorname{rank}(T) = 1 < 4$. Therefore it is not diagonalizable.

Q3(e). Let $\beta = (\beta_1, \beta_2, \beta_3, \beta_4) = ((1, 0), (0, 1), (i, 0), (0, i))$. Then

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

 $det(\lambda I - [T]_{\beta}) = (\lambda - 1)^4 + (\lambda - 1)^2 + (\lambda - 1)^2 + 1 > 0$, then it has no real eigenvalue. It is not diagonalizable.

Remark: It is also correct to consider it as a vector space over \mathbb{C} . Then it is diagonalizable with eigenvalues 1 + i and 1 - i.

Q3(f). Let $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be an ordered basis of V. Then

$$[T]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The characteristic polynomial of T is given by

$$\det([T]_{\gamma} - xI_4) = (x^2 - 1)(x - 1)^2 = (x - 1)^3(x + 1).$$

It splits over \mathbb{R} and the eigenvalues of T are 1, -1, with multiplicity 3, 1 respectively. We check that

$$[T]_{\gamma} - I_4 = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and hence $4 - \operatorname{rank}(T - I_V) = 4 - 1 = 3$ which is the multiplicity of 1. It is clear that $\dim(E_{-1}) = 1$. Therefore T is diagonalizable.

By computation, the null space of $[T]_{\gamma} - I_4$ is span by the linearly independent set

$$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$
$$\left\{ \begin{pmatrix} 1&0\\0&0 \end{pmatrix}, \begin{pmatrix} 0&1\\1&0 \end{pmatrix}, \begin{pmatrix} 0&0\\0&1 \end{pmatrix} \right\}$$

Therefore

is a basis for the eigenspace $\mathsf{E}_1.$

We check that

$$[T]_{\gamma} + I_4 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

and the null space of $[T]_{\gamma} + I_4$ is span by the linearly independent set $\begin{cases} \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \end{cases}$. Therefore $\begin{cases} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{cases}$ is a basis for the eigenspace E_{-1} .

Combining the bases, we have

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

being an ordered basis for V consisting of eigenvectors of T. Hence $[T]_{\beta}$ is a diagonal matrix.

- Q8. The multiplicity of λ_1 is not less than dim $(\mathsf{E}_{\lambda_1}) = n 1$. Also, the multiplicity of λ_2 must not less than 1. Since the sum of multiplicity of λ_1 and λ_2 cannot exceed the degree of the characteristic polynomial of A, which is n, this forces the multiplicity of λ_1 being n - 1 and that of λ_2 being 1. Hence the characteristic polynomial of A splits and multiplicity of λ_i equals to dim (E_{λ_i}) for i = 1, 2. So A is diagonalizable.
- Q12. (a) Let $\mathsf{E}_{\lambda}(T) = \{v \in V : T(v) = \lambda v\}$ be the eigenspace of T associated to λ and define $\mathsf{E}_{\lambda^{-1}}(T^{-1})$ similarly.

If $v \in \mathsf{E}_{\lambda}(T)$, then $T(v) = \lambda v$. Apply $\lambda^{-1}T^{-1}$ on both sides, we have $\lambda^{-1}v = \lambda^{-1}T^{-1}(T(v)) = \lambda^{-1}T^{-1}(\lambda v) = T^{-1}(v)$. Therefore $v \in \mathsf{E}_{\lambda^{-1}}(T^{-1})$ and $\mathsf{E}_{\lambda}(T) \subset \mathsf{E}_{\lambda^{-1}}(T^{-1})$. By repeating the argument with λ^{-1} and T^{-1} , we have $\mathsf{E}_{\lambda^{-1}}(T^{-1}) \subset \mathsf{E}_{(\lambda^{-1})^{-1}}((T^{-1})^{-1}) = \mathsf{E}_{\lambda}(T)$. Hence we get the desired equality.

(b) If T is diagonalizable, then there exists an ordered basis β for V consisting of eigenvectors of T. By part (a), any eigenvector of T is also an eigenvector of T^{-1} . Therefore β is also consisting of eigenvectors of T^{-1} and T^{-1} is diagonalizable.

2 Optional Part

Sec. 5.1

(Sec 5.1 Q01) Ans:

(a) F, simply consider $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. (b) T. A nonzero scalar times an eigenvector gives a new eigenvector. (c) T, consider real matrix, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (d) F. (e) F, see (b). (f) F, otherwise we have infinitely many eigenvalues. (g) F. (h) T. (i) T. (j) F. (k) F. For $\lambda = -1$, $A \sim \begin{pmatrix} 1 & 0.5 - 0.5i \\ 0 & 0 \end{pmatrix}$ hence an eigenvector of A is $(-0.5 + 0.5i, 1)^T$. Together, letting $Q := \begin{pmatrix} 0.5 + 0.5i & -0.5 + 0.5i \\ 1 & 1 \end{pmatrix}$, we have $Q^{-1}AQ = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. (Sec 5.1 Q03(d)) Ans : det $(A - \lambda I) = -\lambda(1 - \lambda)^2$. We have eigenvalues $\lambda = 0, \lambda = 1$. For $\lambda = 0, A \sim 0$ $\begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ hence (1/2, 2, 1) is an eigenvector. When $\lambda = 1$, $A \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, hence (0, 1, 0), (1, 0, 1) are two eigenvectors. Setting $Q = \begin{pmatrix} 1/2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, we have $Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. (Sec 5.1 Q17) Ans :

(a) Let λ an eigenvalue of T, A a corresponding eigenvector, then $A = T^2(A) = T(\lambda A) = \lambda^2 A$, $(I - \lambda^2 I)A = 0$, since $I - \lambda^2 I$ is an elemantory matrix, $0 = (I - \lambda^2 I)A = \begin{pmatrix} (1 - \lambda^2)\vec{A_1} \\ \dots \\ (1 - \lambda^2)\vec{A_n} \end{pmatrix}$, where $\vec{A_i}$ is the *i*-th row of A. If $\vec{A_i}$ not all zero, $(1 - \lambda^2)$ must be equal to 0, i.e., $\lambda = 1, -1$.

- (b) For $\lambda = 1$, it corresponds to those matrix such that $A_{ij} = A_{ji}$, i.e., symmetric matrices. For $\lambda = -1$, it corresponds to those matrix such that $A_{ij} = -A_{ji}$, i.e., skew symmetric matrices.
- (c) Take $\beta = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \}$
- (d) Let E_{ij} be the $n \times n$ matrix with all entries are zero except ij entry being 1, then a basis is $\{E_{ij} + E_{ji} | 1 \le i \le j \le n\} \cup \{E_{ij} E_{ji} | 1 \le i < j \le n\}$.

(Sec 5.1 Q21) Ans:

(a) We prove by induction, for n = 2, $\det\begin{pmatrix}a-t & b\\c & d-t\end{pmatrix} = (a-t)(d-t) - bc$, so n = 2

is true. Suppose n-1 is true, for the case of n, by denoting \overline{B}_{ij} the cofactor matrix of B deleting *i*-th row *j*-th column, and we expand along the first row of A, we have

$$\det(A - tI) = (A_1 1 - t) \det(\overline{A - tI}_{11}) + \sum_{i=2}^n A_{1i} \det(\overline{A - tI}_{1i})$$
$$= (A_{11} - t)(A_{22} - t)...(A_{nn} - t) + q'(t) + \sum_{i=2}^n A_{1i} \det(\overline{A - tI}_{1i})$$

where in the second equality we have used the induction hypothesis, q'(t) a polynomial of degree at most n-3, and $\sum_{i=2}^{n} A_1 i \det(\overline{A-tI}_{1i})$ is a polynomial of degree at most n-2, together $q(t) := q'(t) + \sum_{i=2}^{n} A_1 i \det(\overline{A-tI}_{1i})$ is a polynomial of degree at most n-2. Hence for the case of n it is true.

(b) $f(t) = (A_{11} - t)(A_{22} - t)...(A_{nn} - t) + q(t)$ by part (a), we have also $(A_{11} - t)(A_{22} - t)...(A_{nn} - t)$ is a polynomial of degree n, since q(t) is a polynomial of degree at most n-2, the coefficient of t^n , t^{n-1} is the same as that of $(A_{11} - t)(A_{22} - t)...(A_{nn} - t)$, where the coefficient of t^{n-1} of $(A_{11} - t)(A_{22} - t)...(A_{nn} - t)$ is $(-1)^{n-1}tr(A)$, so $(-1)^{n-1}tr(A) = a_{n-1}$ which gives $tr(A) = (-1)^{n-1}a_{n-1}$.

Sec. 5.2

- Q1. (a) False. Consider $V = \mathbb{R}^3$ and I_V .
 - (b) False. Consider $V = \mathbb{R}^3$, $T = I_V$ and eigenvectors (1, 0, 0), (2, 0, 0).
 - (c) False. Consider $0 \in E_{\lambda}$.
 - (d) True.
 - (e) True.

(f) False. Consider
$$V = \mathbb{R}^2$$
 and L_A where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- (g) True.
- (h) True.
- (i) False. Consider $V = \mathbb{R}^2$, $W_i = \text{span}\{(1, i)\}$ for i = 1, 2, 3.
- Q10. Suppose $d_i = ([T]_{\beta})_{ii}$ for $i = 1, ..., n := \dim V$. Then the characteristic polynomial of T is given by

$$\det([T]_{\beta} - xI_n) = \prod_{i=1}^n (d_i - x)$$
(1)

since determinants of upper triangular matrices are just product of all diagonal entries. Therefore the characteristic polynomial of T splits and each d_i is an eigenvalue. Moreover, the number of times that λ_j occurs as a diagonal entry is exactly number of times $(\lambda_j - x)$ occurs in the product equation (1), which is exactly the multiplicity m_j of λ_j for $j = 1, \ldots, k$.

Q11. Claim 1 If C, D are $n \times n$ matrices similar to each other, then tr(C) = tr(D) and det(C) = det(D).

Proof Suppose Q is an invertible matrix such that $QCQ^{-1} = D$. By Sec 2.3 Q13.,

$$\operatorname{tr}(D) = \operatorname{tr}(QCQ^{-1}) = \operatorname{tr}(CQ^{-1}Q) = \operatorname{tr}(C).$$

The assertion det(C) = det(D) is clear.

From the claim, we may assume A is upper triangular. Apply Q10. with $T = L_A$ and β the standard basis, the diagonal entries of A are $\lambda_1, \ldots, \lambda_k$ and that each λ_i occurs m_i times for $i = 1, \ldots, k$. Therefore

$$\operatorname{tr}(A) = \sum_{j=1}^{n} A_{jj} = \sum_{i=1}^{k} m_i \lambda_i \text{ and } \operatorname{det}(A) = \prod_{j=1}^{n} A_{jj} = \prod_{j=1}^{n} (\lambda_j)^{m_j}.$$

Q17. (a) Let γ be an ordered basis for V such that both $[T]_{\gamma}$ and $[U]_{\gamma}$ are diagonal matrices. Write $Q = [I_V]_{\gamma}^{\beta}$. Then Q is an invertible $n \times n$ matrix such that

$$Q^{-1}[T]_{\beta}Q = [I_V]^{\gamma}_{\beta}[T]_{\beta}[I_V]^{\beta}_{\gamma} = [T]_{\gamma}$$

which is diagonal. Similarly, $Q^{-1}[U]_{\beta}Q = [U]_{\gamma}$ which is also diagonal. The result follows.

(b) Suppose A and B are simultaneously diagonalizable $n \times n$ matrices. Then there exists an invertible $n \times n$ matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices. Let β be the standard basis of \mathbb{R}^n . Let u_i be the *i*-th column vector of Q for i = 1, ..., n. Then since Q is invertible, $\gamma = \{u_1, ..., u_n\}$ is an ordered basis for V and $[I_V]^{\beta}_{\gamma} = Q$. Therefore

$$[\mathsf{L}_A]_{\gamma} = Q^{-1}[\mathsf{L}_A]_{\beta}Q = Q^{-1}AQ$$

which is diagonal. Similarly $[L_B]_{\gamma}$ is also diagonal. The result follows.

Q18. (a) Let γ be an ordered basis for V such that both $[T]_{\gamma}$ and $[U]_{\gamma}$ are diagonal matrices. Then

$$[TU]_{\gamma} = [T]_{\gamma}[U]_{\gamma} = [U]_{\gamma}[T]_{\gamma} = [UT]_{\gamma}.$$

This implies TU = UT.

(b) Suppose A and B are simultaneously diagonalizable $n \times n$ matrices. Then there exists an invertible $n \times n$ matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices. Then

$$AB = Q(Q^{-1}AQ)(Q^{-1}BQ)Q^{-1} = Q(Q^{-1}BQ)(Q^{-1}AQ)Q^{-1} = BA.$$