MATH2040A/B Homework 6 Solution

1 Compulsory Part

Sec. 5.1

(Sec 5.1 Q02(e)) Q: $V = P_3(\mathbb{R})$, $T(a + bx + cx^2 + dx^3) = -d + (-c + d)x + (a + b - 2c)x^2 + (-b + c - 2d)x^3$ and $\beta = \{1 - x + x^3, 1 + x^2, 1, x + x^2\}$

Ans : When written in the standard basis, we have

$$
T\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -d \\ -c+d \\ a+b-2c \\ -b+c-2d \end{pmatrix}
$$

Hence we see that

$$
T\begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix} = \begin{pmatrix} -1\\1\\0\\-1 \end{pmatrix} = -1 \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix}, T\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\-1\\-1\\1 \end{pmatrix}, T\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, T\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\-1\\-1\\0 \end{pmatrix} = -1 \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}
$$

Hence

$$
[T]_{\beta} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.
$$

 β is not a basis with eigenvectors.

(Sec 5.1 Q02(f)) Q:
$$
V = M_{2 \times 2}(\mathbb{R})
$$
, $T\begin{pmatrix} a & b \ c & d \end{pmatrix} = \begin{pmatrix} -7a - 4b + 4c - 4d & b \ -8a - 4b + 5c - 4d & d \end{pmatrix}$
 $\beta = \left\{ \begin{pmatrix} 1 & 0 \ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 2 \ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \ 0 & 2 \end{pmatrix} \right\}$

Ans : We have

$$
T\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = -3\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, T\begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, T\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, T\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}
$$

Hence all vectors in β are eigenvectors and

$$
[T]_{\beta} = \begin{pmatrix} -3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

- (Sec 5.1 Q08) (a) Prove that a linear operator T on a finite dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
	- (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .

Ans :

- (a) T is invertible if and only if $\det(T) \neq 0$ if and only if $\det(T 0I) \neq 0$ if and only if 0 is not an eigenvalue of T.
- (b) From (a), eigenvalues are not zero. Suffices to show one way since T, T^{-1} are inverse to each other.

$$
Tv = \lambda v
$$

$$
\frac{1}{\lambda}v = T^{-1}v
$$

so λ^{-1} is an eigenvalue of T^{-1} .

- (Sec 5.1 Q10) For a finite-dimensional vector space V, any scalar λ and any ordered basis β ,
	- (a) Prove that $[\lambda I_V]_\beta = \lambda I$.
	- (b) Compute the characteristic polynomial of λI_V .
	- (c) Show that λ is diagonalizable and has only one eigenvalue.

Ans :

- (a) For any $\beta_i \in \beta$, $\lambda I_V \beta_i = \lambda \beta_i$, then we conclude $[\lambda I_V]_{\beta} = \lambda I$.
- (b) By definition of characteristic polynomial, $f(t) = det(\lambda I tI) = (\lambda t)^n$, where *n* is the dimension of V .
- (c) By (a) and Theorem 5.1, λ l is diagonalizable. Let $\det(\lambda I tI) = 0$, we see the only eigenvalue is λ .
- (Sec 5.1 Q20) Ans: $det(A tI) = f(t)$, hence $a_0 = f(0) = det(A)$. Hence $a_0 \neq 0$ if and only if $det(A) \neq 0$ if and only if A invertible.

Sec. 5.2

Q3(a). Let γ be the standard ordered basis of V. Then

$$
[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
$$

It is upper triangular and hence 0 is the only eigenvalue of T , which has multiplicity 4 . However, $4 - \text{rank}(T) = 1 < 4$. Therefore it is not diagonalizable.

Q3(e). Let $\beta = (\beta_1, \beta_2, \beta_3, \beta_4) = ((1, 0), (0, 1), (i, 0), (0, i))$. Then

$$
[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.
$$

 $\det(\lambda I - [T]_{\beta}) = (\lambda - 1)^{4} + (\lambda - 1)^{2} + (\lambda - 1)^{2} + 1 > 0$, then it has no real eigenvalue. It is not diagonalizable.

Remark: It is also correct to consider it as a vector space over C. Then it is diagonalizable with eigenvalues $1 + i$ and $1 - i$.

Q3(f). Let $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be an ordered basis of V. Then $[T]_{\gamma} =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 0 0 1 0 \setminus $\vert \cdot$

$$
\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

The characteristic polynomial of T is given by

$$
\det([T]_{\gamma} - xI_4) = (x^2 - 1)(x - 1)^2 = (x - 1)^3(x + 1).
$$

It splits over R and the eigenvalues of T are $1, -1$, with multiplicity 3, 1 respectively. We check that

$$
[T]_{\gamma} - I_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

and hence $4 - \text{rank}(T - I_V) = 4 - 1 = 3$ which is the multiplicity of 1. It is clear that $\dim(E_{-1}) = 1$. Therefore T is diagonalizable.

By computation, the null space of $[T]_{\gamma}-I_4$ is span by the linearly independent set

$$
\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.
$$

$$
\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}
$$

Therefore

is a basis for the eigenspace E_1 .

We check that

$$
[T]_{\gamma} + I_4 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}
$$

and the null space of $[T]_{\gamma} + I_4$ is span by the linearly independent set $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\sqrt{ }$ $\overline{\mathcal{L}}$ 0 −1 1 0 \setminus $\Big\}$ \mathcal{L} $\overline{\mathcal{L}}$ \int . Therefore

 $\left\{ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$ is a basis for the eigenspace E_{-1} .

Combining the bases, we have

$$
\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}
$$

being an ordered basis for V consisting of eigenvectors of T. Hence $[T]_\beta$ is a diagonal matrix.

- Q8. The multiplicity of λ_1 is not less than $\dim(E_{\lambda_1}) = n 1$. Also, the multiplicity of λ_2 must not less than 1. Since the sum of multiplicity of λ_1 and λ_2 cannot exceed the degree of the characteristic polynomial of A, which is n, this forces the multiplicity of λ_1 being $n-1$ and that of λ_2 being 1. Hence the characteristic polynomial of A splits and multiplicity of λ_i equals to $\dim(\mathsf{E}_{\lambda_i})$ for $i = 1, 2$. So A is diagonalizable.
- Q12. (a) Let $E_{\lambda}(T) = \{v \in V : T(v) = \lambda v\}$ be the eigenspace of T associated to λ and define $E_{\lambda^{-1}}(T^{-1})$ similarly.

If $v \in \mathsf{E}_{\lambda}(T)$, then $T(v) = \lambda v$. Apply $\lambda^{-1}T^{-1}$ on both sides, we have $\lambda^{-1}v =$ $\lambda^{-1}T^{-1}(T(v)) = \lambda^{-1}T^{-1}(\lambda v) = T^{-1}(v)$. Therefore $v \in \mathsf{E}_{\lambda^{-1}}(T^{-1})$ and $\mathsf{E}_{\lambda}(T) \subset$ $\mathsf{E}_{\lambda^{-1}}(T^{-1})$. By repeating the argument with λ^{-1} and T^{-1} , we have $\mathsf{E}_{\lambda^{-1}}(T^{-1}) \subset$ $\mathsf{E}_{(\lambda^{-1})^{-1}}((T^{-1})^{-1}) = \mathsf{E}_{\lambda}(T)$. Hence we get the desired equality.

(b) If T is diagonalizable, then there exists an ordered basis β for V consisting of eigenvectors of T. By part (a), any eigenvector of T is also an eigenvector of T^{-1} . Therefore β is also consisting of eigenvectors of T^{-1} and T^{-1} is diagonalizable.

2 Optional Part

Sec. 5.1

(Sec 5.1 Q01) Ans:

(a) F, simply consider $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. (b) T. A nonzero scalar times an eigenvector gives a new eigenvector. (c) T, consider real matrix, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (d) F. (e) F, see (b). (f) F, otherwise we have infinitely many eigenvalues. (g) F. (h) T. (i) T. (j) F. (k) F. $(\text{Sec 5.1 Q03(c))}$ Ans : det $(A - \lambda I) = -(i - \lambda)(i + \lambda) - 2$, solving gives $\lambda = 1, -1$. For $\lambda = 1$, $A \sim$ $\begin{pmatrix} 1 & -0.5 - 0.5i \\ 0 & 0 \end{pmatrix}$ Hence an eigenvector of A is $(0.5 + 0.5i, 1)^T$. For $\lambda = -1, A \sim \begin{pmatrix} 1 & 0.5 - 0.5i \\ 0 & 0 \end{pmatrix}$ hence an eigenvector of A is $(-0.5 + 0.5i, 1)^T$. Together, letting $Q := \begin{pmatrix} 0.5 + 0.5i & -0.5 + 0.5i \\ 1 & 1 \end{pmatrix}$, we have $Q^{-1}AQ = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $0 -1$. (Sec 5.1 Q03(d)) Ans : $det(A - \lambda I) = -\lambda(1 - \lambda)^2$. We have eigenvalues $\lambda = 0, \lambda = 1$. For $\lambda = 0, A \sim$ $\sqrt{ }$ $\overline{1}$ $1 \t 0 \t -1/2$ $0 \quad 1 \quad -2$ 0 0 0 \setminus hence $(1/2, 2, 1)$ is an eigenvector. When $\lambda = 1, A \sim$ $\sqrt{ }$ \mathcal{L} 1 0 −1 0 0 0 0 0 0 \setminus , hence $(0, 1, 0), (1, 0, 1)$ are two eigenvectors. Setting $Q =$ $\sqrt{ }$ $\overline{1}$ 1/2 0 1 2 1 0 1 0 1 \setminus , we have $Q^{-1}AQ =$ $\sqrt{ }$ $\overline{1}$ 0 0 0 0 1 0 0 0 1 \setminus \cdot

(Sec 5.1 Q17) Ans :

- (a) Let λ an eigenvalue of T, A a corresponding eigenvector, then $A = T^2(A) = T(\lambda A)$ $\lambda^2 A$, $(I - \lambda^2 I)A = 0$, since $I - \lambda^2 I$ is an elemantory matrix, $0 = (I - \lambda^2 I)A =$ $\sqrt{ }$ \mathcal{L} $(1 - \lambda^2)\vec{A}_1$... $(1-\lambda^2)\vec{A}_n$ \setminus , where \vec{A}_i is the *i*-th row of A. If \vec{A}_i not all zero, $(1 - \lambda^2)$ must be equal to 0, i.e., $\lambda = 1, -1$.
- (b) For $\lambda = 1$, it corresponds to those matrix such that $A_{ij} = A_{ji}$, i.e., symmetric matrices. For $\lambda = -1$, it corresponds to those matrix such that $A_{ij} = -A_{ji}$, i.e., skew symmetric matrices.
- (c) Take $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$
- (d) Let E_{ij} be the $n \times n$ matrix with all entries are zero except ij entry being 1, then a basis is $\{E_{ij} + E_{ji} | 1 \le i \le j \le n\} \cup \{E_{ij} - E_{ji} | 1 \le i < j \le n\}.$

(Sec 5.1 Q21) Ans:

(a) We prove by induction, for $n = 2$, $\det \begin{pmatrix} a - t & b \\ 0 & 1 \end{pmatrix}$ c $d - t$ $\binom{1}{k} = (a - t)(d - t) - bc$, so $n = 2$

is true. Suppose $n-1$ is true, for the case of n, by denoting \overline{B}_{ij} the cofactor matrix of B deleting *i*-th row *j*-th column, and we expand along the first row of A, we have

$$
\det(A - tI) = (A_1 1 - t) \det(\overline{A - tI}_{11}) + \sum_{i=2}^{n} A_{1i} \det(\overline{A - tI}_{1i})
$$

$$
= (A_{11} - t)(A_{22} - t)...(A_{nn} - t) + q'(t) + \sum_{i=2}^{n} A_{1i} \det(\overline{A - tI}_{1i})
$$

where in the second equality we have used the induction hypothesis, $q'(t)$ a polynomial of degree at most $n-3$, and $\sum_{i=2}^{n} A_1 i \det(\overline{A-tI}_{1i})$ is a polynomial of degree at most $n-2$, together $q(t) := q'(t) + \sum_{i=2}^{n-2} A_i i \det(\overline{A - tI}_{1i})$ is a polynomial of degree at most $n-2$. Hence for the case of n it is true.

(b) $f(t) = (A_{11} - t)(A_{22} - t)...(A_{nn} - t) + q(t)$ by part (a), we have also $(A_{11} - t)(A_{22} - t)$ t)... $(A_{nn} - t)$ is a polynomial of degree n, since $q(t)$ is a polynomial of degree at most $n-2$, the coefficient of t^n , t^{n-1} is the same as that of $(A_{11}-t)(A_{22}-t)...(A_{nn}-t)$, where the coefficient of t^{n-1} of $(A_{11}-t)(A_{22}-t)...(A_{nn}-t)$ is $(-1)^{n-1}tr(A)$, so $(-1)^{n-1}tr(A)$ a_{n-1} which gives $tr(A) = (-1)^{n-1} a_{n-1}$.

Sec. 5.2

- Q1. (a) False. Consider $V = \mathbb{R}^3$ and I_V .
	- (b) False. Consider $V = \mathbb{R}^3$, $T = I_V$ and eigenvectors $(1,0,0)$, $(2,0,0)$.
	- (c) False. Consider $0 \in E_{\lambda}$.
	- (d) True.
	- (e) True.

(f) False. Consider
$$
V = \mathbb{R}^2
$$
 and L_A where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- (g) True.
- (h) True.
- (i) False. Consider $V = \mathbb{R}^2$, $W_i = \text{span} \{ (1, i) \}$ for $i = 1, 2, 3$.
- Q10. Suppose $d_i = (T|_{\beta})_{ii}$ for $i = 1, ..., n := \dim V$. Then the characteristic polynomial of T is given by

$$
\det([T]_{\beta} - xI_n) = \prod_{i=1}^{n} (d_i - x)
$$
 (1)

since determinants of upper triangular matrices are just product of all diagonal entries. Therefore the characteristic polynomial of T splits and each d_i is an eigenvalue. Moreover, the number of times that λ_j occurs as a diagonal entry is exactly number of times $(\lambda_j - x)$ occurs in the product equation [\(1\)](#page-4-0), which is exactly the multiplicity m_j of λ_j for $j = 1, \ldots, k$.

Q11. Claim 1 If C, D are $n \times n$ matrices similar to each other, then $tr(C) = tr(D)$ and $det(C) =$ $det(D)$.

Proof Suppose Q is an invertible matrix such that $QCQ^{-1} = D$. By Sec 2.3 Q13.,

$$
tr(D) = tr(QCQ^{-1}) = tr(CQ^{-1}Q) = tr(C).
$$

г

The assertion $\det(C) = \det(D)$ is clear.

From the claim, we may assume A is upper triangular. Apply Q10. with $T = L_A$ and β the standard basis, the diagonal entries of A are $\lambda_1, \ldots, \lambda_k$ and that each λ_i occurs m_i times for $i = 1, \ldots, k$. Therefore

$$
\text{tr}(A) = \sum_{j=1}^{n} A_{jj} = \sum_{i=1}^{k} m_i \lambda_i \text{ and } \text{det}(A) = \prod_{j=1}^{n} A_{jj} = \prod_{j=1}^{n} (\lambda_j)^{m_j}.
$$

Q17. (a) Let γ be an ordered basis for V such that both $[T]_{\gamma}$ and $[U]_{\gamma}$ are diagonal matrices. Write $Q = [I_V]_{\gamma}^{\beta}$. Then Q is an invertible $n \times n$ matrix such that

$$
Q^{-1}[T]_{\beta}Q = [I_V]^{\gamma}_{\beta}[T]_{\beta}[I_V]^{\beta}_{\gamma} = [T]_{\gamma}
$$

which is diagonal. Similarly, $Q^{-1}[U]_{\beta}Q = [U]_{\gamma}$ which is also diagonal. The result follows.

(b) Suppose A and B are simultaneously diagonalizable $n \times n$ matrices. Then there exists an invertible $n \times n$ matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices. Let β be the standard basis of \mathbb{R}^n . Let u_i be the *i*-th column vector of Q for $i = 1, ..., n$. Then since Q is invertible, $\gamma = \{u_1, \ldots, u_n\}$ is an ordered basis for V and $[I_V]_{\gamma}^{\beta} = Q$. Therefore

$$
[\mathsf{L}_A]_\gamma = Q^{-1}[\mathsf{L}_A]_\beta Q = Q^{-1}AQ
$$

which is diagonal. Similarly $[L_B]_{\gamma}$ is also diagonal. The result follows.

Q18. (a) Let γ be an ordered basis for V such that both $[T]_{\gamma}$ and $[U]_{\gamma}$ are diagonal matrices. Then

$$
[TU]_{\gamma} = [T]_{\gamma}[U]_{\gamma} = [U]_{\gamma}[T]_{\gamma} = [UT]_{\gamma}.
$$

This implies $TU = UT$.

(b) Suppose A and B are simultaneously diagonalizable $n \times n$ matrices. Then there exists an invertible $n \times n$ matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices. Then

$$
AB = Q(Q^{-1}AQ)(Q^{-1}BQ)Q^{-1} = Q(Q^{-1}BQ)(Q^{-1}AQ)Q^{-1} = BA.
$$