
MATH2040A/B Homework 6 Solution

1 Compulsory Part

Sec. 5.1
(Sec 5.1 Q02(e)) Q: V = P3(R), T (a+ bx+ cx2 + dx3) = −d+ (−c+ d)x+ (a+ b− 2c)x2 + (−b+ c− 2d)x3

and β = {1− x+ x3, 1 + x2, 1, x+ x2}

Ans : When written in the standard basis, we have

T


a
b
c
d

 =


−d
−c+ d

a+ b− 2c
−b+ c− 2d


Hence we see that

T


1
−1
0
1

 =


−1
1
0
−1

 = −1


1
−1
0
1

 , T


1
0
1
0

 =


0
−1
−1
1

 , T


1
0
0
0

 =


0
0
1
0

 , T


0
1
1
0

 =


0
−1
−1
0

 = −1


0
1
1
0


Hence

[T ]β =


−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 −1

 .

β is not a basis with eigenvectors.

(Sec 5.1 Q02(f)) Q: V =M2×2(R), T
(
a b
c d

)
=

(
−7a− 4b+ 4c− 4d b
−8a− 4b+ 5c− 4d d

)
β = {

(
1 0
1 0

)
,

(
−1 2
0 0

)
,

(
1 0
2 0

)
,

(
−1 0
0 2

)
}

Ans : We have

T

(
1 0
1 0

)
= −3

(
1 0
1 0

)
, T

(
−1 2
0 0

)
=

(
−1 2
0 0

)
, T

(
1 0
2 0

)
=

(
1 0
2 0

)
, T

(
−1 0
0 2

)
=

(
−1 0
0 2

)
Hence all vectors in β are eigenvectors and

[T ]β =


−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(Sec 5.1 Q08) (a) Prove that a linear operator T on a finite dimensional vector space is invertible if and

only if zero is not an eigenvalue of T .

(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and
only if λ−1 is an eigenvalue of T−1.

Ans :
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(a) T is invertible if and only if det(T ) 6= 0 if and only if det(T − 0I) 6= 0 if and only if 0 is
not an eigenvalue of T .

(b) From (a), eigenvalues are not zero. Suffices to show one way since T , T−1 are inverse
to each other.

Tv = λv

1

λ
v = T−1v

so λ−1 is an eigenvalue of T−1.

(Sec 5.1 Q10) For a finite-dimensional vector space V , any scalar λ and any ordered basis β,

(a) Prove that [λIV ]β = λI.

(b) Compute the characteristic polynomial of λIV .

(c) Show that λI is diagonalizable and has only one eigenvalue.

Ans :

(a) For any βi ∈ β, λIV βi = λβi, then we conclude [λIV ]β = λI.

(b) By definition of characteristic polynomial, f(t) = det(λI − tI) = (λ − t)n, where n is
the dimension of V .

(c) By (a) and Theorem 5.1, λI is diagonalizable. Let det(λI − tI) = 0, we see the only
eigenvalue is λ.

(Sec 5.1 Q20) Ans: det(A− tI) = f(t), hence a0 = f(0) = det(A). Hence a0 6= 0 if and only if det(A) 6= 0
if and only if A invertible.

Sec. 5.2
Q3(a). Let γ be the standard ordered basis of V . Then

[T ]γ =


0 1 2 0
0 0 2 6
0 0 0 3
0 0 0 0

 .

It is upper triangular and hence 0 is the only eigenvalue of T , which has multiplicity 4.
However, 4− rank(T ) = 1 < 4. Therefore it is not diagonalizable.

Q3(e). Let β = (β1, β2, β3, β4) = ((1, 0), (0, 1), (i, 0), (0, i)). Then

[T ]β =


1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

 .

det(λI − [T ]β) = (λ− 1)4 + (λ− 1)2 + (λ− 1)2 + 1 > 0, then it has no real eigenvalue. It is
not diagonalizable.

Remark: It is also correct to consider it as a vector space over C. Then it is diagonalizable
with eigenvalues 1 + i and 1− i.

Q3(f). Let γ =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be an ordered basis of V . Then

[T ]γ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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The characteristic polynomial of T is given by

det([T ]γ − xI4) = (x2 − 1)(x− 1)2 = (x− 1)3(x+ 1).

It splits over R and the eigenvalues of T are 1,−1, with multiplicity 3, 1 respectively. We
check that

[T ]γ − I4 =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


and hence 4 − rank(T − IV ) = 4 − 1 = 3 which is the multiplicity of 1. It is clear that
dim(E−1) = 1. Therefore T is diagonalizable.

By computation, the null space of [T ]γ − I4 is span by the linearly independent set

1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 .

Therefore {(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
is a basis for the eigenspace E1.

We check that

[T ]γ + I4 =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2



and the null space of [T ]γ + I4 is span by the linearly independent set




0
−1
1
0


. Therefore

{(
0 −1
1 0

)}
is a basis for the eigenspace E−1.

Combining the bases, we have

β =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
0 −1
1 0

)}
being an ordered basis for V consisting of eigenvectors of T . Hence [T ]β is a diagonal matrix.

Q8. The multiplicity of λ1 is not less than dim(Eλ1
) = n − 1. Also, the multiplicity of λ2 must

not less than 1. Since the sum of multiplicity of λ1 and λ2 cannot exceed the degree of the
characteristic polynomial of A, which is n, this forces the multiplicity of λ1 being n− 1 and
that of λ2 being 1. Hence the characteristic polynomial of A splits and multiplicity of λi
equals to dim(Eλi

) for i = 1, 2. So A is diagonalizable.

Q12. (a) Let Eλ(T ) = {v ∈ V : T (v) = λv} be the eigenspace of T associated to λ and define
Eλ−1(T−1) similarly.
If v ∈ Eλ(T ), then T (v) = λv. Apply λ−1T−1 on both sides, we have λ−1v =
λ−1T−1(T (v)) = λ−1T−1(λv) = T−1(v). Therefore v ∈ Eλ−1(T−1) and Eλ(T ) ⊂
Eλ−1(T−1). By repeating the argument with λ−1 and T−1, we have Eλ−1(T−1) ⊂
E(λ−1)−1((T−1)−1) = Eλ(T ). Hence we get the desired equality.

(b) If T is diagonalizable, then there exists an ordered basis β for V consisting of eigenvectors
of T . By part (a), any eigenvector of T is also an eigenvector of T−1. Therefore β is
also consisting of eigenvectors of T−1 and T−1 is diagonalizable.
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2 Optional Part

Sec. 5.1
(Sec 5.1 Q01) Ans:

(a) F, simply consider
(
0 0
0 0

)
.

(b) T. A nonzero scalar times an eigenvector gives a new eigenvector.

(c) T, consider real matrix, and
(
0 1
1 0

)
.

(d) F.

(e) F, see (b).

(f) F, otherwise we have infinitely many eigenvalues.

(g) F.

(h) T.

(i) T.

(j) F.

(k) F.

(Sec 5.1 Q03(c)) Ans : det(A − λI) = −(i − λ)(i + λ) − 2, solving gives λ = 1,−1. For λ = 1, A ∼(
1 −0.5− 0.5i
0 0

)
Hence an eigenvector of A is (0.5 + 0.5i, 1)T .

For λ = −1, A ∼
(
1 0.5− 0.5i
0 0

)
hence an eigenvector of A is (−0.5 + 0.5i, 1)T . Together,

letting Q :=

(
0.5 + 0.5i −0.5 + 0.5i

1 1

)
, we have Q−1AQ =

(
1 0
0 −1

)
.

(Sec 5.1 Q03(d)) Ans : det(A − λI) = −λ(1 − λ)2. We have eigenvalues λ = 0, λ = 1. For λ = 0, A ∼1 0 −1/2
0 1 −2
0 0 0

 hence (1/2, 2, 1) is an eigenvector.

When λ = 1, A ∼

1 0 −1
0 0 0
0 0 0

, hence (0, 1, 0), (1, 0, 1) are two eigenvectors.

Setting Q =

1/2 0 1
2 1 0
1 0 1

, we have Q−1AQ =

0 0 0
0 1 0
0 0 1

.

(Sec 5.1 Q17) Ans :

(a) Let λ an eigenvalue of T , A a corresponding eigenvector, then A = T 2(A) = T (λA) =
λ2A, (I − λ2I)A = 0, since I − λ2I is an elemantory matrix, 0 = (I − λ2I)A =(1− λ2) ~A1

...

(1− λ2) ~An

, where ~Ai is the i-th row of A. If ~Ai not all zero, (1−λ2) must be equal

to 0, i.e., λ = 1,−1.
(b) For λ = 1, it corresponds to those matrix such that Aij = Aji, i.e., symmetric matrices.

For λ = −1, it corresponds to those matrix such that Aij = −Aji, i.e., skew symmetric
matrices.

(c) Take β = {
(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)
}

(d) Let Eij be the n × n matrix with all entries are zero except ij entry being 1, then a
basis is {Eij + Eji|1 ≤ i ≤ j ≤ n} ∪ {Eij − Eji|1 ≤ i < j ≤ n}.

(Sec 5.1 Q21) Ans:
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(a) We prove by induction, for n = 2, det(
(
a− t b
c d− t

)
) = (a − t)(d − t) − bc, so n = 2

is true. Suppose n− 1 is true, for the case of n, by denoting Bij the cofactor matrix of
B deleting i-th row j-th column, and we expand along the first row of A, we have

det(A− tI) = (A11− t) det(A− tI11) +
n∑
i=2

A1i det(A− tI1i)

= (A11 − t)(A22 − t)...(Ann − t) + q′(t) +

n∑
i=2

A1i det(A− tI1i)

where in the second equality we have used the induction hypothesis, q′(t) a polynomial
of degree at most n− 3, and

∑n
i=2A1i det(A− tI1i) is a polynomial of degree at most

n− 2, together q(t) := q′(t) +
∑n
i=2A1idet(A− tI1i) is a polynomial of degree at most

n− 2. Hence for the case of n it is true.
(b) f(t) = (A11 − t)(A22 − t)...(Ann − t) + q(t) by part (a), we have also (A11 − t)(A22 −

t)...(Ann − t) is a polynomial of degree n, since q(t) is a polynomial of degree at most
n−2, the coefficient of tn, tn−1 is the same as that of (A11−t)(A22−t)...(Ann−t), where
the coefficient of tn−1 of (A11−t)(A22−t)...(Ann−t) is (−1)n−1tr(A), so (−1)n−1tr(A) =
an−1 which gives tr(A) = (−1)n−1an−1.

Sec. 5.2
Q1. (a) False. Consider V = R3 and IV .

(b) False. Consider V = R3, T = IV and eigenvectors (1, 0, 0), (2, 0, 0).
(c) False. Consider 0 ∈ Eλ.
(d) True.
(e) True.

(f) False. Consider V = R2 and LA where A =

(
0 −1
1 0

)
.

(g) True.
(h) True.
(i) False. Consider V = R2, Wi = span {(1, i)} for i = 1, 2, 3.

Q10. Suppose di = ([T ]β)ii for i = 1, . . . , n := dimV . Then the characteristic polynomial of T is
given by

det([T ]β − xIn) =
n∏
i=1

(di − x) (1)

since determinants of upper triangular matrices are just product of all diagonal entries.
Therefore the characteristic polynomial of T splits and each di is an eigenvalue. Moreover,
the number of times that λj occurs as a diagonal entry is exactly number of times (λj − x)
occurs in the product equation (1), which is exactly the multiplicity mj of λj for j = 1, . . . , k.

Q11. Claim 1 If C, D are n×n matrices similar to each other, then tr(C) = tr(D) and det(C) =
det(D).

Proof Suppose Q is an invertible matrix such that QCQ−1 = D. By Sec 2.3 Q13.,

tr(D) = tr(QCQ−1) = tr(CQ−1Q) = tr(C).

The assertion det(C) = det(D) is clear.

From the claim, we may assume A is upper triangular. Apply Q10. with T = LA and β the
standard basis, the diagonal entries of A are λ1, . . . , λk and that each λi occurs mi times for
i = 1, . . . , k. Therefore

tr(A) =

n∑
j=1

Ajj =

k∑
i=1

miλi and det(A) =

n∏
j=1

Ajj =

n∏
j=1

(λj)
mj .
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Q17. (a) Let γ be an ordered basis for V such that both [T ]γ and [U ]γ are diagonal matrices.
Write Q = [IV ]

β
γ . Then Q is an invertible n× n matrix such that

Q−1[T ]βQ = [IV ]
γ
β [T ]β [IV ]

β
γ = [T ]γ

which is diagonal. Similarly, Q−1[U ]βQ = [U ]γ which is also diagonal. The result
follows.

(b) Suppose A and B are simultaneously diagonalizable n× n matrices. Then there exists
an invertible n×n matrix Q such that both Q−1AQ and Q−1BQ are diagonal matrices.
Let β be the standard basis of Rn. Let ui be the i-th column vector of Q for i = 1, . . . , n.
Then since Q is invertible, γ = {u1, . . . , un} is an ordered basis for V and [IV ]

β
γ = Q.

Therefore
[LA]γ = Q−1[LA]βQ = Q−1AQ

which is diagonal. Similarly [LB ]γ is also diagonal. The result follows.

Q18. (a) Let γ be an ordered basis for V such that both [T ]γ and [U ]γ are diagonal matrices.
Then

[TU ]γ = [T ]γ [U ]γ = [U ]γ [T ]γ = [UT ]γ .

This implies TU = UT .

(b) Suppose A and B are simultaneously diagonalizable n× n matrices. Then there exists
an invertible n×n matrix Q such that both Q−1AQ and Q−1BQ are diagonal matrices.
Then

AB = Q(Q−1AQ)(Q−1BQ)Q−1 = Q(Q−1BQ)(Q−1AQ)Q−1 = BA.
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